Associate Professor Tamás Fischer
Content navigation
About
Tamás Fischer is an Associate Professor at The John Curtin School of Medical Research (JCSMR) at The Australian National University. He completed his PhD studies in 2005 at the University of Heidelberg, Germany, working on the nuclear export of mRNA and its coupling to transcription. Following his PhD, he was awarded a postdoctoral fellowship in epigenetics and chromatin biology at the National Cancer Institute (NCI, NIH) in the USA. He returned to Germany in 2010 to establish his own independent research group at the University of Heidelberg Biochemistry Center. He has recently moved his laboratory to Canberra, Australia to join the Department of Genome Sciences at JCSMR.
The major research focus in the Fischer lab is to understand the connection between chromatin structure, pervasive transcription and RNA surveillance, and their influence on genomic stability and disease development, especially in cancer and aging-related diseases. In addition, the lab is pursuing synthetic biology approaches to develop early detection and novel treatment methods in cancer.
Affiliations
Research interests
- Chromatin biology
- RNA surveillance
- Genome stability
- DNA repair
- Cancer Biology
- Synthetic biology
Projects
- Chromatin and RNA surveillance , Supervisor
- Development of a molecular tool for personalised cancer treatment – a synthetic biology approach, Supervisor
- The role of chromatin in the repression of pervasive transcription , Supervisor
- The role of pervasive transcription in genomic instability and how it contributes to cancer development, Supervisor
Location
Room 3.079
Publications
Gumiero, A., Conz, C., Gese, G. V., Zhang, Y., Weyer, F., Lapouge, K., Kappes, J., Plewe, U., Schermann, G., Fitzke, E., Wölfle, T., Fischer, T., Rospert, S., Sinning, I. Interaction of the cotranslational Hsp70 Ssb with ribosomal proteins and rRNA depends on its lid domain. Nat. Commun. 7:13563 (2016).
Ohle, C.*, Tesorero, R.*, Schermann, G., Dobrev, N., Sinning, I., Fischer, T. Transient RNA-DNA Hybrids Are Required for Efficient Double-Strand Break Repair, Cell 167, 1001–1013 (2016). (*These authors contributed equally.)
Tucker, J. F., Ohle, C., Schermann, G., Bendrin, K., Zhang, W., Fischer, T., Zhang, K. A Novel Epigenetic Silencing Pathway Involving the Highly Conserved 5'-3' Exoribonuclease Dhp1/Rat1/Xrn2 in Schizosaccharomyces pombe. PLoS Genet. 12, e1005873 (2016).
Zhou, Y.*, Zhu, J.*, Schermann, G., Ohle, C., Bendrin, K., Sugioka-Sugiyama, R., Sugiyama, T., and Fischer, T. The fission yeast MTREC complex targets CUTs and unspliced pre-mRNAs to the nuclear exosome. Nat. Commun. 7:7050 (2015). (*These authors contributed equally.)
Sancar, C., Ha, N., Yilmaz, R., Tesorero, R., Fischer, T., Brunner, M. and Sancar, G. Combinatorial control of light induced chromatin remodeling and gene activation in neurospora. PLoS Genet. 11, e1005105 (2015).
Hoffmann, J., Symul, L., Shostak, A., Fischer, T., Naef, F. and Brunner, M. Non-Circadian Expression Masking Clock-Driven Weak Transcription Rhythms in U2OS Cells. PLoS One 9, e102238 (2014).
Hennig, B. P. and Fischer, T. The great repression: Chromatin and cryptic transcription. Transcription 4, 97-101 (2013).
Hennig, B. P., Bendrin, K., Zhou, Y. and Fischer, T. Chd1 chromatin remodelers maintain nucleosome organization and repress cryptic transcription. EMBO Rep. 13, 997-1003 (2012).
Zhang, K., Fischer, T., Porter, R. L., Dhakshnamoorthy, J., Zofall, M., Zhou, M., Veenstra, T. and Grewal, S. I. Clr4/Suv39 and RNA quality control factors cooperate to trigger RNAi and suppress antisense RNA. Science 331, 1624-7 (2011).
Zofall, M.*, Fischer, T.*, Zhang, K., Zhou, M., Cui, B., Veenstra, T. D. and Grewal, S. I. Histone H2A.Z cooperates with RNAi and heterochromatin factors to suppress antisense RNAs. Nature 461, 419-22 (2009). (*These authors contributed equally.)
Fischer, T., Cui, B., Dhakshnamoorthy, J., Zhou, M., Rubin, C., Zofall, M., Veenstra, T. D. and Grewal, S. I. Diverse roles of HP1 proteins in heterochromatin assembly and functions in fission yeast. Proc. Natl. Acad. Sci. U S A 106, 8998-9003 (2009
Jani, D., Lutz, S., Marshall, N. J., Fischer, T., Kohler, A., Ellisdon, A. M., Hurt, E. and Stewart, M. Sus1, Cdc31, and the Sac3 CID region form a conserved interaction platform that promotes nuclear pore association and mRNA export. Mol. Cell 33, 727-37 (2009).
Roguev, A., Bandyopadhyay, S., Zofall, M., Zhang, K., Fischer, T., Collins, S. R., Qu, H., Shales, M., Park, H. O., Hayles, J., Hoe, K. L., Kim, D. U., Ideker, T., Grewal, S. I., Weissman, J. S. and Krogan, N. J. Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 322, 405-10 (2008).
Grund, S. E., Fischer, T., Cabal, G. G., Antunez, O., Perez-Ortin, J. E. and Hurt, E. The inner nuclear membrane protein Src1 associates with subtelomeric genes and alters their regulated gene expression. J. Cell Biol. 182, 897-910 (2008).
Fischer, T., Rodriguez-Navarro, S., Pereira, G., Racz, A., Schiebel, E. and Hurt, E. Yeast centrin Cdc31 is linked to the nuclear mRNA export machinery. Nat. Cell Biol. 6, 840-8 (2004).
Rodriguez-Navarro, S., Fischer, T., Luo, M. J., Antunez, O., Brettschneider, S., Lechner, J., Perez-Ortin, J. E., Reed, R. and Hurt, E. Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell 116, 75-86 (2004).
Olasz, F., Fischer, T., Szabo, M., Nagy, Z. and Kiss, J. Gene conversion in transposition of Escherichia coli element IS30. J. Mol. Biol. 334, 967-78 (2003).
Fischer, T.*, Strasser, K.*, Racz, A., Rodriguez-Navarro, S., Oppizzi, M., Ihrig, P., Lechner, J. and Hurt, E. The mRNA export machinery requires the novel Sac3p-Thp1p complex to dock at the nucleoplasmic entrance of the nuclear pores. EMBO J. 21, 5843-52 (2002). (*These authors contributed equally.)
Czirják, G., Fischer, T., Spät, A., Lesage, F. and Enyedi, P. TASK (TWIK-related acid-sensitive K+ channel) is expressed in glomerulosa cells of rat adrenal cortex and inhibited by angiotensin II. Mol. Endocrinol. 863-74 (2000).